<<12345>>
16.

The rank of the matrix

$\begin{bmatrix}3 & 5&-1&4 \\2 & 1&3&-2\\8&11&1&6\\-7&-14&6&-14 \end{bmatrix}$  is 


A) 1

B) 2

C) 3

D) 4



17.

if the function $f:[a,b]\rightarrow \left[-\frac{\sqrt{3}}{4},\frac{1}{2}\right]$ defined by

$f(x)=\begin{bmatrix}1 & 1&1 \\1 & 1+\sin_{}x&1\\1+\cos x&1&1 \end{bmatrix}$

 is one-one and onto , then


A) $a=\frac{-\pi}{4},b=\frac{\pi}{6}$

B) $a=\frac{-\pi}{2},b=\frac{\pi}{2}$

C) $a=\frac{-\pi}{6},b=\frac{\pi}{4}$

D) $a=-\pi, b=\pi$



18.

If  $\alpha\in R, n\in N $  and n+2(n-1)+3(n-2)+....(n-1)2+n.1= $\alpha$ n(n+1)(n+2), then $\alpha$=  


A) $\frac{1}{2}$

B) $\frac{1}{3}$

C) $\frac{1}{5}$

D) $\frac{1}{6}$



19.

Let  $f:R\rightarrow R $ and $g:R\rightarrow R$  be the functions defined by  $f(x)= \frac{x}{1+x^{2}}$,

$x \in R, g(x)=\frac{x^{2}}{1+x^{2}},x\in R$  Then, the correct statement (s) among the following is/are

(a) both f.g are one-one

(b)  both f.g are onto

(c)  both f.g are not one-one  as well as onto

(d) f and g are onto but not one-one


A) A

B) A.B

C) D

D) C



20.

  The domain of the function 

$f(x)= \frac{1}{\sqrt{[x]^{2}-[x]^{}-2}}$  is 

 Here [x]  denotes the greatest integer not exceeding the value of [x]


A) $(-\infty,-2)\cup (1, \infty)$

B) $(-\infty,-2)\cup (0, \infty)$

C) $(-\infty,-2)\cup (2, \infty)$

D) $(-\infty,-1)\cup (3, \infty)$



<<12345>>